Search through your memories and documents with a single API call.
Use searchMode: "hybrid" for best results. It searches both memories and document chunks, returning the most relevant content.
Quick Start
import Supermemory from 'supermemory';
const client = new Supermemory();
const results = await client.search({
q: "machine learning",
containerTag: "user_123",
searchMode: "hybrid",
limit: 5
});
results.results.forEach(result => {
console.log(result.content, result.similarity);
});
from supermemory import Supermemory
client = Supermemory()
results = client.search(
q="machine learning",
container_tag="user_123",
search_mode="hybrid",
limit=5
)
for result in results.results:
print(result.content, result.similarity)
curl -X POST "https://api.supermemory.ai/v4/search" \
-H "Authorization: Bearer $SUPERMEMORY_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"q": "machine learning",
"containerTag": "user_123",
"searchMode": "hybrid",
"limit": 5
}'
Response:
{
"results": [
{
"id": "mem_xyz",
"content": "User is interested in machine learning for product recommendations",
"similarity": 0.91,
"metadata": { "topic": "interests" }
},
{
"id": "chunk_abc",
"content": "Machine learning enables personalized experiences at scale...",
"similarity": 0.87,
"metadata": { "source": "onboarding_doc" }
}
],
"timing": 92,
"total": 5
}
Parameters
| Parameter | Type | Default | Description |
|---|
q | string | required | Search query |
containerTag | string | — | Filter by user/project |
searchMode | string | "hybrid" | "hybrid" (recommended) or "memories" |
limit | number | 10 | Max results |
threshold | 0-1 | 0.5 | Similarity cutoff (higher = fewer, better results) |
rerank | boolean | false | Re-score for better relevance (+100ms) |
filters | object | — | Metadata filters (AND/OR structure) |
Search Modes
hybrid (recommended) — Searches both memories and document chunks, returns the most relevant
memories — Only searches extracted memories
// Hybrid: memories + document chunks (recommended)
await client.search({
q: "quarterly goals",
containerTag: "user_123",
searchMode: "hybrid"
});
// Memories only: just extracted facts
await client.search({
q: "user preferences",
containerTag: "user_123",
searchMode: "memories"
});
Filtering
Filter by containerTag to scope results to a user or project:
const results = await client.search({
q: "project updates",
containerTag: "user_123",
searchMode: "hybrid"
});
Use filters for metadata-based filtering:
const results = await client.search({
q: "meeting notes",
containerTag: "user_123",
filters: {
AND: [
{ key: "type", value: "meeting" },
{ key: "year", value: "2024" }
]
}
});
- String equality:
{ key: "status", value: "active" }
- String contains:
{ filterType: "string_contains", key: "title", value: "react" }
- Numeric:
{ filterType: "numeric", key: "priority", value: "5", numericOperator: ">=" }
- Array contains:
{ filterType: "array_contains", key: "tags", value: "important" }
- Negate:
{ key: "status", value: "draft", negate: true }
See Organizing & Filtering for full syntax.
Query Optimization
Reranking
Re-scores results for better relevance. Adds ~100ms latency.
const results = await client.search({
q: "complex technical question",
containerTag: "user_123",
rerank: true
});
Threshold
Control result quality vs quantity:
// Broad search — more results
await client.search({ q: "...", threshold: 0.3 });
// Precise search — fewer, better results
await client.search({ q: "...", threshold: 0.8 });
Chatbot Example
Optimal configuration for conversational AI:
async function getContext(userId: string, message: string) {
const results = await client.search({
q: message,
containerTag: userId,
searchMode: "hybrid",
threshold: 0.6,
limit: 5
});
return results.results
.map(r => r.content)
.join('\n\n');
}
interface SearchResult {
id: string;
content: string; // Memory or chunk content
similarity: number; // 0-1
metadata: object | null;
updatedAt: string;
}
interface SearchResponse {
results: SearchResult[];
timing: number; // ms
total: number;
}
Next Steps